Occurrence

Pl@ntNet automatically identified occurrences

Dernière version Publié par Pl@ntNet le 8 février 2023 Pl@ntNet
Accueil:
Lien
Date de publication:
8 février 2023
Publié par:
Pl@ntNet
Licence:
CC-BY 4.0

Téléchargez la dernière version de la ressource en tant qu'Archive Darwin Core (DwC-A), ou les métadonnées de la ressource au format EML ou RTF :

Données sous forme de fichier DwC-A (zip) télécharger 12 142 287 enregistrements dans Anglais (515 MB) - Fréquence de mise à jour: non planifié
Métadonnées sous forme de fichier EML télécharger dans Anglais (16 KB)
Métadonnées sous forme de fichier RTF télécharger dans Anglais (12 KB)

Description

Pl@ntNet is a participatory botanical observation platform allowing to identify plants from photos (using deep learning) and to share the observations with the community. The platform has three main front-ends: Pl@ntNet androïd (http://bit.ly/1K4D1eU), Pl@ntNet iOS (http://apple.co/2cMtWgu) and Pl@ntNet web (https://identify.plantnet.org/). Pl@ntNet was founded in 2010 by a consortium of four French research organisms (CIRAD, Inria, INRAE and IRD) and is now open to other members. More information about Pl@ntNet can be found at https://plantnet.org/. The occurrences in this collection are Pl@ntNet observations that have been identified only by the deep learning algorithm but which the algorithm confidence was sufficiently high to consider them as valid.

Enregistrements de données

Les données de cette ressource occurrence ont été publiées sous forme d'une Archive Darwin Core (Darwin Core Archive ou DwC-A), le format standard pour partager des données de biodiversité en tant qu'ensemble d'un ou plusieurs tableurs de données. Le tableur de données du cœur de standard (core) contient 12 142 287 enregistrements.

Cet IPT archive les données et sert donc de dépôt de données. Les données et métadonnées de la ressource sont disponibles pour téléchargement dans la section téléchargements. Le tableau des versions liste les autres versions de chaque ressource rendues disponibles de façon publique et permet de tracer les modifications apportées à la ressource au fil du temps.

Versions

Le tableau ci-dessous n'affiche que les versions publiées de la ressource accessibles publiquement.

Comment citer

Les chercheurs doivent citer cette ressource comme suit:

AFFOUARD A, JOLY A, LOMBARDO J, CHAMP J, GOEAU H, CHOUET M, GRESSE H, BOTELLA C, BONNET P (2023): Pl@ntNet automatically identified occurrences. v1.8. Pl@ntNet. Dataset/Occurrence. https://ipt.plantnet.org/resource?r=queries&v=1.8

Droits

Les chercheurs doivent respecter la déclaration de droits suivante:

L’éditeur et détenteur des droits de cette ressource est Pl@ntNet. Ce travail est sous licence Creative Commons Attribution (CC-BY) 4.0.

Enregistrement GBIF

Cette ressource a été enregistrée sur le portail GBIF, et possède l'UUID GBIF suivante : 14d5676a-2c54-4f94-9023-1e8dcd822aa0.  Pl@ntNet publie cette ressource, et est enregistré dans le GBIF comme éditeur de données avec l'approbation du GBIF France.

Mots-clé

Occurrence; Observation; Occurrence

Contacts

Personne ayant créé cette ressource:
-

Antoine AFFOUARD
Engineer
Inria
LIRMM
34095 Montpellier
FR
Julien CHAMP
Research Engineer
Inria
LIRMM
34095 Montpellier
FR
Hervé GOEAU
Researcher
CIRAD, AMAP Joint Research Unit
Cirad, Umr Amap - TA A-51/ps1, Bd de La Lironde
34398 Montpellier Cedex 5 (France)
FR
Mathias CHOUET
Engineer
Inria
LIRMM
34095 Montpellier
FR
Hugo GRESSE
Engineer
Inria
LIRMM
34095 Montpellier
FR
Christophe BOTELLA
Pierre BONNET
Botanist
CIRAD, AMAP Joint Research Unit
Cirad, Umr Amap - TA A-51/ps1, Bd de La Lironde
34398 Montpellier Cedex 5 (France)
FR
http://agents.cirad.fr/index.php/Pierre+BONNET

Personne pouvant répondre aux questions sur la ressource:

Pierre BONNET
Botanist
CIRAD, AMAP Joint Research Unit
Cirad, Umr Amap - TA A-51/ps1, Bd de La Lironde
34398 Montpellier Cedex 5 (France)
FR
http://agents.cirad.fr/index.php/Pierre+BONNET

Personne ayant renseigné les métadonnées:
-

Antoine AFFOUARD
Engineer
Inria
LIRMM
34095 Montpellier
FR

Autres personnes associées à la ressource:

Antoine AFFOUARD
Programmeur
Engineer
Inria
LIRMM
34095 Montpellier
FR

Couverture géographique

Plant observations from Pl@ntNet users come from all around the world.

Enveloppe géographique Sud Ouest [-90, -180], Nord Est [90, 180]

Couverture taxonomique

Pl@ntNet observations focus on plants.

Kingdom Plantae (Plant)

Données sur le projet

PlantNet is a participatory botanical observation platform allowing to identify plants from photos (using deep learning) and share observations with the community. This resource contains occurrences of plants automatically inferred from the plant observations submitted by the users of PlantNet application.

Titre Pl@ntNet Queries
Identifiant queries
Financement PlantNet is an open consortium founded by four French research organizations (CIRAD, Inria, INRAE, IRD) and supported by Agropolis Fondation. The two main funding resources are: (i) the annual contribution of the members of the consortium, (ii) donations from the end-users of PlantNet application (>10 million users).
Description du domaine d'étude / de recherche Entire world

Les personnes impliquées dans le projet:

Antoine AFFOUARD
Programmeur
Alexis JOLY
Pierre BONNET

Méthodes d'échantillonnage

No sampling protocol, opportunistic observations by Pl@ntNet users.

Etendue de l'étude Entire world, Plantae.
Contrôle qualité The validation is based on two main criteria: - the output of the automated identification algorithm is greater than a threshold (more precisely the top-1 probability output by the convolutional neural network is greater than 0.9) - the species name matches the checklist considered as the most trusted one for the country where the observation was done

Description des étapes de la méthode:

  1. This collection contains occurrences of plants automatically identified from the observations submitted by Pl@ntNet users to identify them (using one of the three applications: androïd, iOS, web, more information here: https://plantnet.org/). The following filters were applied: - is geolocated - is valid (top-1 softmax output > 0.9) - from a user with an enabled account or from an anonymous user - with a known species name (valid or synonym) in PN - species name != Cannabis - date_query > 0 - remove shared queries (already present in observation dataset) - remove duplicate session (keep the most recent query based on the session number) - must be in one of the WGSRPD polygon level 3 and the binomial species name (without author) must match a species of the corresponding Kew checklist

Citations bibliographiques

  1. Joly, A., Goëau, H., Bonnet, P., Bakić, V., Barbe, J., Selmi, S., ... & Yahiaoui I., Carré J., Mouysset E., Molino J.-f., Boujemaa B., Barthélémy D., (2014). Interactive plant identification based on social image data. Ecological Informatics, 23, 22-34. https://doi.org/10.1016/j.ecoinf.2013.07.006
  2. Joly, A., Bonnet, P., Goëau, H., Barbe, J., Selmi, S., Champ, J., Dufour-Kowalski, S., Affouard, A., Carré, J., Molino, J.-f., Boujemaa, N., & Barthélémy D., (2016). A look inside the Pl@ntNet experience. Multimedia Systems, 22(6), 751-766. https://doi.org/10.1007/s00530-015-0462-9
  3. Goëau, H., Bonnet, P., Joly, A., 2017. Plant identification based on noisy web data: the amazing performance of deep learning (LifeCLEF 2017). CLEF: Conference and Labs of the Evaluation Forum, Sep 2017, Dublin, Ireland. ⟨hal-01629183⟩ https://hal.archives-ouvertes.fr/hal-01629183
  4. Affouard, A., Goëau, H., Bonnet, P., Lombardo, J. C., & Joly, A., (2017). Pl@ntNet app in the era of deep learning. ICLR: International Conference on Learning Representations, Apr 2017, Toulon, France. ⟨hal-01629195⟩ https://hal.archives-ouvertes.fr/hal-01629195

Métadonnées additionnelles

Identifiants alternatifs 14d5676a-2c54-4f94-9023-1e8dcd822aa0
https://ipt.plantnet.org/resource?r=queries